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Phase transitions are a highly studied area within numerous scientific fields. While it is

often easy to identify the physical phase of a material as a solid, liquid, or gas, it proves more

challenging to identify magnetic phases by observation alone. This paper expands on previous

research which has demonstrated that machine learning models can prove to be effective tools

in classifying magnetic phases, implementing binary image classification methods to identify

simulated spin configuration data as corresponding to the ferromagnetic or paramagnetic phases.

First, we validate previous results using machine learning methodologies on the Ising model of

a magnetic material before expanding to the study of the XY model, which exhibits a less

easily-identifiable phase transition. We find that fairly simple neural network architectures are

able to classify simulated magnetic spin configuration data with a high degree of accuracy,

strengthening the case for further study of the implementation of machine learning methods in

scientific use-cases such as this one.
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I Introduction

When identifying phase of matter one often uses properties such as temperature, mass, volume,

and other easily measurable or observable properties. Phase diagrams are commonly used for

a wide range of compounds to describe when they may transition between a solid, liquid or

gas as a function of temperature and pressure. These phase transitions typically correspond

to a change in the arrangement in the compound’s underlying atoms, taking, for example, the

grid-like arrangement of water molecules as it transitions from a liquid to solid at 0 ◦C.

Phase transitions also occur in the domain of magnetic materials as the individual magnetic

moments of atoms within a material may rearrange when exposed to changes in temperature

or external magnetic fields. One can imagine a magnetic material as a series of atoms each

possessing a magnetic moment. The overall energy of a given material corresponds to the degree

to which the magnetic moments (also called spins) of the atoms align with each other. When

the majority of the spins within a material are aligned, this is referred to as the ferromagnetic

phase. At higher temperatures, the spins within the material become randomized in what is

known as the paramagnetic phase. Similar to the known temperatures at which water freezes

and boils, there too exist distinct temperatures at which magnetic materials transition from

ferromagnetic to paramagnetic phase.

This paper aims to validate the results of and expand on previous research using machine

learning tools to classify magnetic phase from the spin configurations of a simulated magnetic

system. We begin by exploring the theory behind both the Ising and XY models of magnetic

materials and explaining why the magnetization cannot function as an order parameter for both

systems. We then move to validate earlier results [1, 2] demonstrating the effectiveness of a

neural network when performing binary classification on simulated magnetic spin configurations

for the Ising model. We then extend this neural network classification to the XY model of

magnetic materials, exploring which neural network architecture can most effectively identify

magnetic phase based on images of spin configurations and use this to predict the temperature

at which our system transitions from ferromagnetic to paramagnetic. [3].
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II Theory

II. (i) The Ising Model

The simplest mathematical representation of a magnetic material is known as the Ising model.

One can visualize the two-dimensional Ising model as a lattice of atoms, where each atom can be

either spin up or spin down. When the majority of spins are either all spin up or all spin down,

our material is classified as ferromagnetic. Conversely, when spins are a random combination of

up and down our material is classified as paramagnetic. Fig. 1 shows visualizations of the Ising

model for a material in the ferromagnetic and paramagnetic phase, respectively.

Fig. 1. Spin configurations for two-dimensional square lattice Ising model. The fer-

romagnetic phase (a) consists of mostly aligned spins and has low energy and high

magnetization (as described by equations (1) and (3) respectively). Conversely, the

paramagnetic phase (b) consists of randomly aligned spins and higher energy, with a

magnetization value approaching 0.

The energy of the Ising model is determined by the interaction between neighboring spins

and is related to the temperature of the system being represented. The total energy E is given

by

E = −J
∑
⟨i,j⟩

SiSj, (1)

where S = ±1 represents our atom being spin up or spin down and J is a positive constant with

units of energy that describes the strength of the interaction between adjacent atoms. Possible
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energy values for pairs of neighboring spins are thus

E(↑↑) = E(↓↓) = −J for aligned spins

E(↑↓) = E(↓↑) = +J for misaligned spins.

This summation is taken over all pairs of neighboring points within the lattice.

The Boltzmann factor tells us that the probability of a certain energy state is proportional

to

P (E) ∝ e−E/kbT , (2)

where E is the energy of the system given by equation 1, kb is the Boltzmann constant, and T

is the temperature of the system. This equation tells us that at low temperature, systems with

low energy are favored which correspond to lattices in which the spins are mostly aligned as in

Fig. 1a. As temperature increases, the probability of each energy state approaches the same

value and each state becomes equally likely resulting in random spin configurations as in Fig.

1b.

The magnetization can be thought of as the degree to which spins are aligned, ranging in

value from 0 (spins randomized) to 1 (spins fully aligned). In the Ising model, magnetization

can be calculated by averaging the spins across the entire lattice

M =
1

N

∑
i

Si, (3)

where Si = ±1 corresponds to the spin of a given point within our lattice, and N is the total

number of points within our lattice. A plot of the magnetization as a function of temperature

for a variety of lattice dimensions ranging from L = 4 × 4 to L = 64 × 64 is shown in Fig.

2. We see a dramatic drop in magnetization at around T ≈ 2.3 kbT/J , which corresponds to

the transition from the ferromagnetic to paramagnetic phase. This value, known as the critical

temperature Tc, is given by [4]

Tc =
2

ln(1 +
√
2)

≈ 2.269 J/kb. (4)
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Note that as lattice dimension L increases, the magnetization drops increasingly abruptly around

the critical temperature Tc.

Fig. 2. Average magnetization squared ⟨M2⟩ as a function of temperature for an

L = 4 × 4 to L = 64 × 64 two-dimensional square Ising lattice, as calculated with

equation (3). The data used in this calculation was produced by a Monte Carlo

simulation as described in section III. (i). The vertical line in this plot corresponds

to the value of the critical temperature, Tc. Note that this plot does include standard

error estimates but that the values are too small to be visible.

The Ising model is widely used across many disciplines, though it is well studied for this

application representing magnetic materials. The Ising model can also be easily simulated

computationally, as is explained in Section III. (i). However, this model substantially oversim-

plifies the physics behind atomic interactions within magnetic materials such that it is worth

exploring alternative models of magnetic materials to more adequately represent the underlying

physics.

II. (ii) The XY Model

The XY model, much like the Ising model, is a mathematical model which can be used to

represent spins within a magnetic material. The important difference between the Ising and XY
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models, though, is that while spins in the Ising model exist only as binary value of up or down,

spins in the XY model can be any orientation in the xy plane. This adds additional complexity

compared to the Ising model when describing the interaction between neighboring spins, though

many of the calculations regarding system energy and magnetization are similar.

As with the Ising model, aligned spins in the XY model correspond to a ferromagnetic

material while randomized spins correspond to a paramagnetic material as shown in Fig. 3.

The probability of a given energy state in the XY model is still dictated by the Boltzmann

factor in equation (2). The total energy of a system according to the XY model is

E = −J
∑
⟨i,j⟩

S⃗i · S⃗j = −J
∑
⟨i,j⟩

cos(θi − θj), (5)

where S⃗i and S⃗j are the unit vectors corresponding to our spin angles of neighboring points

within the lattice and J is a positive constant with units of energy that describes the strength

of interaction between adjacent points in the lattice.

One important difference in the possible energy values between the Ising and XY models

is that the energy values in the Ising model are discrete, depending on whether a given point

within the lattice is spin up or spin down. This makes it more difficult to disorder the system.

The XY model, in contrast, allows for slight perturbations to individual spins which allows for

smaller fluctuations in energy.

The calculation of magnetization for the XY model involves separately adding the x and y

components of the spin vectors together

⟨Mx⟩ =
1

N

∑
i

cos(θi) and ⟨My⟩ =
1

N

∑
i

sin(θi), (6)

where θi is the angle of our spin vector. The calculation for average magnetization squared ⟨M2⟩

follows from equation (6)

⟨M2⟩ = ⟨M2
x⟩+ ⟨M2

y ⟩ . (7)

A plot of magnetization squared as a function of temperature for a variety of lattice dimensions

ranging from L = 4 × 4 to L = 64 × 64 is shown in Fig. 4. The XY model also experiences
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Fig. 3. Spin configurations for a two-dimensional square lattice XY model where

L = 8 × 8. The ferromagnetic phase (a) consists of mostly aligned spins and has low

energy and high magnetization (as described by equations (5) and (7) respectively).

Conversely, the paramagnetic phase (b) consists of randomly aligned spins and higher

energy, with a magnetization value approaching 0.

an abrupt ferromagnetic-paramagnetic phase transition as described by the Kosterlitz-Thouless

transition at a numerically-determined critical temperature Tc ≈ 0.8816 [5]. As lattice size

increases magnetization values begin to drop more abruptly such that for very large system

sizes the magnetization approaches 0 for all temperatures.

It is important to note that unlike magnetization in the Ising model, the XY model magne-

tization does not exhibit the same dramatic drop around Tc and is not well suited for identifying

the magnetic phase of our simulated magnetic material. Fig. 4 shows that as system size in-

creases the average magnetization curve shifts down and to the left, and for infinite system size

the magnetization would approach 0 at all temperatures. While there are other values rele-

vant to the XY model such as vorticity and helicity modulus which can be used to identify the

critical temperature, these require additional computation to determine and would introduce

potentially unnecessary complexity. Previous research has demonstrated that neural networks

can be effective tools for classifying magnetic materials using the Ising model [1, 2], and this

paper seeks to explore the application of neural networks to the more complex XY model.

7



Fig. 4. Average magnetization squared ⟨M2⟩ as a function of temperature for an

L = 4 × 4 to L = 64 × 64 two-dimensional square XY-model lattice, as calculated

with equations (6) and (7). The data used in this calculation was produced by a

Monte Carlo simulation as described in section III. (i). The vertical line in this plot

corresponds to the value of the critical temperature, Tc. Note that this plot does

include standard error estimates but that the values are too small to be visible.

II. (iii) Overview of Machine Learning

Machine learning refers to the broad field of using computer models and algorithms to learn,

interpret and make decisions based on data without explicit guidance. One can imagine a

machine learning model as a black-box function which takes in arbitrary data as an input and

outputs a result based on how that data is interpreted, which can be visualized in Fig. 5. There

exist several different subcategories within machine learning based on how the input data is

configured and the degree to which the process of ”learning” is supervised by humans. This

research implements a supervised machine learning architecture known as a neural network

which is well suited for the classification problem which we are presented with.
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Fig. 5. Input data is passed into our machine learning function, which performs a

series of mathematical operations to adjust its parameters to minimize the deviation

between its output and the desired output.

II. (iv) Neural Networks

A neural network is a kind of supervised machine learning model which is designed to process

and interpret data in a way analogous to neurons within the brain. Input data is passed into a

series of nodes, which are then connected to an arbitrary number of additional ”hidden layers”

to perform loss minimization before ultimately being passed into a number of output nodes. In

the case of a binary classification problem such as the one explored in this project, that number

of output nodes is two. Two common neural network architectures are shown in Fig. 6.

A fully connected neural network is one in which each node in a given layer is connected

to all of the nodes in the following layer, as shown in Fig. 6a. A convolutional neural network

(CNN), on the other hand, consists of layers of nodes which are not necessarily connected to all

nodes in the subsequent layer (as shown in Fig. 6b). This can be advantageous when dealing

with input data which may depend on locality, as a CNN may be better equipped to identify

geographic clusters within the input data.

A neural network is trained by taking in a series of input data points and their corresponding

labels. In this research we pass in an array of numerical values corresponding to the spin

configurations generated for both the Ising and XY models, along with the appropriate label of

whether a given spin corresponds to a system which is above or below the critical temperature

Tc. Neural networks are typically trained over a series of epochs, in which a subset of the

training data is processed and used to update the parameter weights to improve the accuracy
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(a) Fully connected neural network (b) Convolutional neural network

Fig. 6. Two common neural network architectures. In a fully connected network

(a), every node is connected to every node in the adjacent layer such that locality

is not preserved. In a convolutional network (b), input nodes are connected only to

subsequent pairs of nodes, preserving information about locality as opposed to the

fully-connected network.

of the model.

In the case of a binary classification such as this one, the output of the neural network is

a pair of values corresponding to the probability of the input data corresponding to each of the

two possible labels (in this case, whether the system is above or below Tc. This probability value

can also be interpreted as a level of ”confidence” that the neural network has when classifying

a given input in either of the two ways. Together, these two probability values add to 1.

III Methods

This research was divided into two primary phases. First, we validated previous results which

demonstrated the success of using neural networks to classify spin configurations for the Ising

model [1, 2]. After confirming these results, we explored implementing various neural network

architectures for the XY model of magnetic materials to determine which architecture has the
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greatest accuracy when predicting the value of Tc [3]. An overview of the experimental workflow

is below:

1. Create parameter file and use C++ simulation to generate spin configuration data.

2. Iterate through spin configuration file extracting raw spin values and organizing by tem-

perature.

3. Generate magnetization plots calculated using equations (3) and (7).

4. Convert data into appropriate form to input into neural network and begin training pro-

cess.

5. Test model on new randomized spin configuration data to determine accuracy of model.

6. Generate plots of confidence vs. temperature for each network architecture and system

size.

7. Perform curve fitting to identify the temperature at which confidence values intersect,

corresponding to the neural network’s estimate for Tc.

8. Interpolate Tc estimates across multiple system sizes to determine estimate for Tc at infinite

system size.

III. (i) Data Generation

Spin configuration data was generated using a preexisting Markov Chain Monte Carlo simulation

[6] which uses statistical sampling to produce a spin for every point within the simulated lattice

with probabilities dictated by equation (2). Each array corresponding to the spin configuration

of a given lattice was then given a label of above or below the critical temperature Tc depending

on the temperature which was input into the Monte Carlo simulation.

The dataset for the Ising model consisted of a range of temperatures from T = 0.5 J/kb

to T = 4.0 J/kb at increments of T = 0.1 J/kb, except near the critical temperature where

data was produced at increments of T = 0.02 J/kb. A similar process was employed for the XY

model, where data was generated for the temperature range T = 0.1 J/kb to T = 1.8 J/kb at

intervals of T = 0.05 J/kb. Near the critical temperature, increments of T = 0.02 J/kb were

again used.
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In both the Ising and XY models, 5000 statistically independent spin configurations were

generated for each of these temperatures to ensure sufficient data for training and testing, with

4000 spin configurations being used for training and the remaining 1000 being used for testing

at each temperature. Simulation data was produced for lattice sizes ranging from L = 4× 4 up

to L = 64× 64 to allow for the study of how model accuracy varied with system size.

III. (ii) Neural Network Training

The TensorFlow machine learning python package was used to generate the neural networks

used throughout this research [7]. Training on data for the Ising model was kept brief, aiming

only to validate previous results. We employed a simple three-layer model, the first consisting of

L2 input nodes to create a one-to-one correspondence between each point in our lattice and each

node in our model. Next, we utilized a 128-node fully connected layer followed by a two-node

output layer corresponding to whether the model thought that the spin configuration represented

a system that was above or below the critical temperature Tc.

We used four different neural network architectures for the XY model, described below as

follows:

1. Fully connected - cos: A fully connected neural network consisting of L2 input nodes,

each taking in a single float value representing the cosine value of the spin vector. Input

nodes are fully connected to 128 hidden nodes, which then connect to two output nodes.

2. Fully connected - sin: A fully connected neural network consisting of L2 input nodes,

each taking in a single float value representing the sine value of the spin vector. Input

nodes are fully connected to 128 hidden nodes, which then connect to two output nodes.

3. Fully connected - combined: A fully connected neural network consisting of 2L2 input

nodes, where one set of L2 nodes takes in a single float value representing the cosine value

of the spin vector and the next L2 taking a single float representing the sine value of the

spin vector. Input nodes are fully connected to 128 hidden nodes, which then connect to

two output nodes.

4. CNN - 2 channel: A two-channel convolutional neural network (CNN) consisting of L2

input nodes, each structured to take in two float values corresponding to the cosine and
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sine values of the spin vector. These input nodes are then connected to pairs of subsequent

hidden nodes, which are then fully connected to 128 nodes and then to the pair of output

nodes. See Fig. 6b for a visualization of this neural network.

In all cases, training was done over 20 epochs. Due to limitations in computing power, we were

unable to perform neural network analysis on the L = 64× 64 XY model data.

III. (iii) Estimating Tc

After the models were trained, we were able to test them by passing in previously unseen

spin configurations which were then classified by the models and compared their outputs with

the correct classification label. For each spin configuration, the neural network output values

of confidence above and below the critical temperature which were grouped and averaged by

system temperature and used to produce a plot of confidence as a function of temperature (an

example of which is shown in Fig. 9. We used the scipy.curve fit function to perform a linear

fit on the confidence plots for values near Tc from which we could solve for the temperature at

which the confidence values equalled 50%. This value was then interpreted as the estimate for

Tc, from which we could produce a plot of estimated Tc values as a function of neural network

architecture for various system sizes. After determining Tc estimates at a variety of different

system sizes for each neural network architecture, we could plot these estimates and find a line

of best fit which allowed us to determine a value of Tc at infinite system size.

IV Results

We saw encouraging results across both the Ising and XY models regardless of specific neural

network architecture and system size. Fig 7 shows a single plot of confidence vs. temperature

for L = 64 × 64 for the two-dimensional Ising model. Data Figs. 8 and 9 show plots of

confidence versus temperature for system sizes ranging from L = 4 × 4 up to L = 64 × 64 and

L = 32× 32 for the Ising and XY models, respectively. The Ising model was trained on a fully-

connected network as described in section III. (ii), while the XY model utilized a two-channel

convolutional neural network (CNN), also described in section III. (ii). At temperatures far

from Tc, the models correctly identified the simulated data as above or below Tc with a high
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degree of confidence. In both the Ising and XY models, the neural network experiences a loss

of confidence at values quite close to the critical temperature of each model (Tc = 2.269 J/kb

for Ising and Tc = 0.8816 J/kb for XY). We also see that the confidence values for both models

are much lower for temperatures away from Tc when L = 4, indicating that the neural networks

struggle to make accurate classifications with limited input data in a small system size.

Fig. 7. Plot of classification confidence versus temperature for the two-dimensional

Ising model for L = 64× 64. Note that plot does contain standard error estimates but

these values are too small to be visible.

Fig. 10 shows that for larger system sizes in the XY model, we see a sharper drop in

the confidence for the two-channel CNN than when utilizing a fully-connected network train on

cos values, sin values, or a combination of both. This confirms results seen by [3], indicating

that a convolutional neural network is better suited for classification with the XY model than

a fully-connected neural network.

We see a similar advantage of the CNN when estimating Tc from our confidence plots as

described in section III. (iii). Our CNN produced an estimated critical temperature value of

Tc,2channel = 0.886±0.005 J/kb for an infinite system size which, when accounting for uncertainty,
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Fig. 8. Plot of classification confidence versus temperature for the two-dimensional

Ising model at lattice sizes from L = 4× 4 to L = 64× 64. Model is trained on a fully

connected neural network as shown in Fig. 6a. Notice how curve sharpness increases

with system size and how the point at which the confidence curves cross aligns closely

with the critical temperature, plotted in black. Note that plot does contain standard

error estimates but these values are too small to be visible.

agrees with the accepted value of Tc = 0.8816 J/kb. There is also a general trend towards smaller

uncertainties as system size increases as confidence plots become sharper and the intersection

regions grow more linear.
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Fig. 9. Plot of classification confidence versus temperature for the two-dimensional

XY model at lattice sizes from L = 4 × 4 to L = 32 × 32. Model is trained on a

two-channel convolutional neural network as shown in Fig. 6b. Notice how curve

sharpness increases with system size and how the point at which the confidence curves

cross aligns closely with the critical temperature, plotted in black. Note that plot does

contain standard error estimates but these values are too small to be visible.
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Fig. 10. Neural network confidence as a function of temperature for a simulated

L = 32 × 32 lattice across various network architectures. Red, green and blue curves

were trained on a fully-connected neural network with a 128-node hidden layer, while

the purple curve corresponds to a convolutional neural network trained on cos and sin

values passed in together.

Fig. 11. Tc estimates as function of system size for various neural network architectures.

Linear fit of Tc estimates for each system size was interpolated to find the y-intercept,

representing the value of Tc at an infinitely large system size.
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V Discussion and Conclusion

This research aimed to explore the implementation of neural networks in studying and classify-

ing magnetic phase based on numerical representations of spin configurations. Our results have

demonstrated that even simple neural networks can be very effective at classifying magnetic

phase and indirectly identifying the critical temperature Tc for different models of magnetic

materials, confirming prior results by Carrasquilla et al. [1] and Beach et al [3]. We confirmed

that the CNN provided the most accurate estimate for Tc compared to the fully-connected net-

work architectures, indicating that this architecture is perhaps better suited for more complex

magnetic models. Future research should explore implementing more sophisticated CNN ar-

chitectures which can more accurately account for the complexity of the atomic interactions

within the XY model, as well as extending this methodology to other models of magnetic ma-

terials.
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Appendix

Code

The code used for generating the data, training the neural networks and processing the results

is available at https://github.com/julian-calder/phys-704.

Monte Carlo Simulation Parameters

Both the Ising and XY model simulations shared the following parameters:

• Seed: 0

• Number of Warm-up Sweeps: 10,000

• Sweeps per Measurement: 100

• Measurements per Bin: 10

• Number of Bins: 5,000

• Lattice Parameters: D = 2, L = [4, 4], [8, 8], [16, 16] and [32, 32] (to run simulation

on different system sizes)

• Model Parameters: J = 1, h = 0

The Ising model used temperatures from 0.5 to 4.0 at intervals of 0.1, except for the range

of 2.0 to 2.4 which was spaced every 0.02. The XY model, on the other hand, used temperature

values from 0.1 to 1.8 at intervals of 0.05, except for the range 0.7 to 1.0 which was spaced every

0.02. The ”Spin Dimension” parameter was 1 for the Ising model, and 2 for XY.

Neural Network Parameters

The connections between nodes within a neural network each possess their own weights which

are adjusted with every epoch that the model is trained such that it is tuned to minimize the

deviation between the model output and the expected output. Each node within the neural

network also contains its own activation function which is used to introduce non-linearity into

the network as it decides whether or not to incorporate the weight of a given neuron.
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Both Ising and XY models were trained with the relu activation function for the fully-

connected hidden layer, though the XY model CNN architecture replaced the original L2 in-

put nodes with a Conv2D input layer with a 3 × 3 convolution window which also utilized

the relu activation function. Both models were compiled with the adam optimizer with the

SparseCategoricalCrossentropy loss function.

Error Calculation

Uncertainty in estimates for neural network confidence vs. temperature were calculated with

the standard error of the mean:

σx̄ =
σ√
N
, (8)

where σ is the standard deviation of the data and N is the number of samples. Uncertainty in

Tc values were determined by the variance in parameters A and B (from equation y = A+Bx)

which were output by scipy.curve fit and propagated as described in [8].

Plots of Confidence vs. Temperature

Plots of confidence versus temperature were generated for all system sizes and neural network

architectures, as shown in Figs. 12 and 13. All plots contain standard error calculated using

equation (8), though values are too small to be visible.

Tc Estimation From Confidence Plots

The process of estimating Tc from the plots of confidence vs. temperature involved producing

linear fit functions in the data region where the confidence plots crossed, as shown in Fig.

14. Setting the fit functions equal to each other allowed us to determine an estimate for the

intersection point, representing the estimated value for Tc. This process was repeated for each

neural network architecture and system size. These values were then plotted as shown in Fig.

11, and a linear fit on those estimates let us interpolate a value for Tc at L ≈ ∞.
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(a) L = 4× 4 (b) L = 8× 8

(c) L = 16× 16 (d) L = 32× 32

Fig. 12. Confidence vs. temperature at various system sizes for each of the XY model

neural network architectures.

21



(a) Fully connected - cos (b) Fully connected - sin

(c) Fully connected - combined (d) CNN - 2 channel

Fig. 13. Confidence vs. temperature for different neural network architectures at

various system sizes for the XY model.
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Fig. 14. Example linear fit functions in the region where confidence values intersect

for a CNN architecture when L = 32. Finding the intersection point between these

linear functions yielded the Tc,estimated, which was then used to produce the plot seen

in Fig 11.
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